22.1.05

816.- Cohomologia

816.- Cohomologia

Si hoy hiciera un week-log, aunque no sea un blog figuraría esto:
Title: Combinatorial Stacks and the Four-Colour Theorem
Authors: Romain Attal
Comments: 12 pages; uses AMS macros and xypic
Subj-class: Combinatorics; Mathematical Physics; Quantum Algebra
\We interpret the number of good four-colourings of the faces of a trivalent, spherical polyhedron as the 2-holonomy of the 2-connection of a fibered category, phi, modeled on Rep(sl(2)) and defined over the dual triangulation, T. We also build an sl(2)-bundle with connection over T, that is a global, equivariant section of phi, and we prove that the four-colour theorem is equivalent to the fact that the connection of this sl(2)-bundle vanishes nowhere. This interpretation may be a first step toward a cohomological proof of the four-colour theorem.
\\
http://arXiv.org/abs/math/0501231


No, yo tampoco entendí las matemáticas involucradas, pero de estar bien, esta conexión relación entre el conocido teorema de los cuatro colores y la cohomología me haría replantear algunas opiniones. [taché 'conexión' porque justo en éstas áreas, tiene un significado propio]